Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Combining two parts to make a whole (use other	
resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.
Four is a part, 3 is a part and the	
whole is seven.	

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	
TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Children to represent the base 10 in a place value chart.	Looking for ways to make 10.

Use of place value counters to add HTO + TO, HTO +
HTO etc. When there are 10 ones in the 1 s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.

100s	10s	1s
\bigcirc	0000	000
$\bigcirc \bigcirc$		00 08 08

Children to represent the counters in a place value chart, circling when they make an exchange.

11

Conceptual variation; different ways to ask children to solve 21 + 34

Word problems:
In year 3, there are 21 children and
in year 4, there are 34 children.
How many children in total?

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease,

Column method using base 10 and having to exchange.

Column method using place value counters.

Represent the base 10 pictorially, remembering to show the exchange.

Represent the place value counters pictorially; remembering to show what has been exchanged.

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.
$\begin{array}{r}3 / 411 \\ -26 \\ \hline 15\end{array}$
Formal colum method. Children must understand what has happened when they have crossed out digits.
234

- 88 6

Conceptual variation; different ways to ask children to solve 391-186

t is 186 less than 391 ?

Missing digit calculations

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.
Repeated grouping/repeated addition
3×4
$4+4+4$

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 105 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ A number line can also be used
Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding.

Formal written method

$6 \times 23=$

23

11

When children start to multiply $3 \mathrm{~d} \times 3 \mathrm{~d}$ and $4 \mathrm{~d} \times 2 \mathrm{~d}$ etc., they should be confident with the abstract:

	1	2	4
\times		2	6
	7	4	4
2	4	8	0
3	2	2	4
1	1		

Answer: 3224

Conceptual variation; different ways to ask children to solve 6×23

Calculation policy: Division

Key language: share, group, divide, divided by, half.

2d \div 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.
$13 \div 4$
Use of lollipop sticks to form wholes- squares are made because we are dividing by 4.

There are 3 whole squares, with 1 left over.

Sharing using place value counters.

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over.

Children to represent the place value counters pictorially.

$13 \div 4-3$ remainder 1

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
'3 groups of 4, with 1 left over'

Children to be able to make sense of the place value counters and write calculations to show the process.

$$
\begin{aligned}
& 42 \div 3 \\
& 42=30+12 \\
& 30 \div 3=10 \\
& 12 \div 3=4 \\
& 10+4=14
\end{aligned}
$$

Short division using place value counters to group.
$615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.
$5 \stackrel{123}{6^{\prime} 1^{\prime} 5}$

Long division using place value counters
$2544 \div 12$

1000s	100s	10s	1s
- 0	$\ominus^{\circ 00 \odot}$	0000	0000
1000s	100s	10s	1 s
		-000	-(ర)ত

We can't group 2 thousands into
groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

$$
\begin{gathered}
1 2 \longdiv { 0 2 } \\
\frac{24}{2544} \\
\hline 1
\end{gathered}
$$

After exchanging the hundred, we	
have 14 tens. We can group 12 tens	
into a group of 12, which leaves 2 tens.	$1 2 \longdiv { 2 5 4 4 }$
	$\frac{24}{25}$

1000s	100s	10s	1s
		0000	

After exchanging the 2 tens, we
have 24 ones. We can group 24 ones
into 2 group of 12 , which leaves no remainder.

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

$5 \longdiv { 6 1 5 }$

$615 \div 5=$
「7
$=615 \div 5$

What is the calculation?
What is the answer?

100 s	10 s	1s
Θ^{Θ}		00000
Θ°	00000	00000

